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NOMENCLATURE 

h dimensionless stream function ; 

Gr,, Grashof number, g/?A7’x3!v2 ; 

Gr:. modified Grashof number, gbqx4/kv2 ; 
9. acceleration due to gravity ; 
h. local heat transfer coefficient. q/AT. 

k, thermal conductivity; 

Nu,, local Nusselt number, hxik; 
Prandtl number, V/K; 

heat flux constant ; 
Reynolds number, Uxiv; 

temperature; 

ambient temperature; 

local plate temperature : 
free stream velocity; 

streamwise velocity : 
transverse velocity: 

streamwise coordinate; 

transverse coordinate : 
T, - TO: 
coefficient of thermal expansion ; 
dimensionless temperature : 
pseudo-similarity variable ; 
coefficient of thermal conductivity; 

kinematic viscosity ; 
dimensionless streamwise coordinate: 

stream function. 

criticisms made by Merkin [2] with respect to attempted 

series solutions about the basic free and forced convection 

flows as outlined by Szewczyk [3]. Essentially the error in 

[3] could be attributed to the choice ofa parameter expansion 

as opposed to the correct choice, namely a coordinate 

expansion. In this light it is seen that account must be taken 

of difficulties, which arise in the form of eigen-solutions, in the 

perturbed free convection solution. These difficulties are 

associated with the asymptotic nature of this solution at a 

distance far removed from the leading edge and indeed 

reflect the solutions’ unawareness of the precise location of 

the leading edge (see Stewartson [4]). ‘In [2]‘ a dimensional 
analysis of the governing equations yields the choice of non- 

dimensional coordinate as 

Gr,_ sP(L - T,)x 
Re: - Uz 

This coordinate reflects the basic concepts of the problem 

namely a transition from a perturbed forced convection 

flow near the leading edge to a perturbed free convection 

flow downstream. 

In the constant flux problem the non-dimensional para- 

meters governing the flow comprise the local Reynolds 

number Re, = Uxjv. Grashof number Gr, = gflATx3’v2 

and the Nusselt number Nu, = qJkAT where AT = T, - 
TO and T, is the local temperature of the plate. A dimensional 

analysis of the basic equations yields the non-dimensional 

coordinate for this situation as 

1. INTRODUCTION 

Tms note is concerned with the flow envisaged when a 

uniform stream U flows along a semi-infinite plate extending 

vertically upwards with its leading edge horizontal. Also where GT: is known as the modified Grashof number. 

present are favourable buoyancy forces introduced by a 5 clearly reflects the transition from a perturbed forced 

uniform surface heat flux q from the plate relative to the convection flow at small t: to a perturbed free convection 

surrounding ambient temperature To. In many types of flow at large c, It can be demonstrated that solutions for the 

exchangers this condition is closer to actual conditions than cases of small 5 and large 5 involve expansions in 5’ near the 

the isothermal condition which has been discussed by leading edge and 5-f for downstream. However. as pointed 

Lloyd and Sparrow [l]. Consequently the work that follows out in [l], the concept of local similarity is inapplicable at 

presents results to supplement those of the above named large c and attention must be focussed on information 

authors. In particular these authors acknowledged the appropriate to small 5. 
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FIG. 1. 
---local similarity solution. 
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Table 1 

Pr = 0.1 Pr = 0.12 Pr = 1 

0 0.33257 4.93984 @3326 2.4375 @3326 2.1775 0.3326 1+016 0.3326 0.4644 
0.1 0.58563 4.47398 0.4209 2.3258 0.4060 2.0916 0.3510 0.9903 0.3367 0.4632 
1 3.53855 2.88811 1.7173 I.6375 1.5341 1.5015 0.7457 0.8270 04497 0.4340 
2 6.56319 2.40940 3.0908 1.3791 2.7414 1.2678 1.2253 0.7216 0.6175 0.4014 
4 0.972 1 0.3552 
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2. THE EQUATIONS 

Under the usual assumptions the equations expressing 

conservation of mass, momentum and energy take the form 

du au 
iix+-'o 

8): 
(1) $T+ ,!ctiszT 

3X i)y dy" (3) 



SHORTER COMMUNICATIONS 1961 

As posed the boundary conditions of the problem are 

aT -q 
u=v=O,-=k ony=O 

ay 

u-r u, T--T, asy+x, 

u = U, T=T, atx=O,y>O 

(4) 

The transformations consistent with the forced convection 
nature of the flow in the vicinity of the leading edge are 

The implementation of these transformations and the 
application of the local similarity principle yield, 

f”’ + +ff” - &j = 0 (6) 

I 

I 

0 
u 

u 
0 

0 

0 
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o- 

8- 

6- 

where dashes are associated with q derivatives, to be solved 
subject to the boundary conditions 

At any streamwise position along the plate the value of < 
may be regarded as an assignable constant parameter and 
equations (6) and (7) as a system of ordinary differential 
equations at each streamwise location of interest. 

3. RESULTS 

Equations (6) and (7) have been solved numerically for the 
range of Prandtl numbers Pr = 0.1, 0.72, 1, 10, 100 and for 
ranges of 5 encompassing the transition from a purely forced 
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convection region to one in which buoyancy forces are are referred to right and upper axes. As the Prandtl number 
expected to predominate. Successful integration of (6) and decreases buoyancy effects are increasingly in evidence in 
(7) is dependent on a knowledge of the two unknown velocity profiles and strong overshoot is a feature at the 
boundary conditions at q = 0, namely (a’f/&&, 0 and (e),, 0, lower end of the range. Variations in temperature profiles 
which must be determined such that integration of (6) and are far less pronounced over the range of Prandtl numbers 
(7) from 11 = 0 leads to velocity and temperature profiles and indeed at Pr = 100 profiles at various 5 are so close to 
fulfilling the boundary conditions away from the plate. each other that Fig. 6 contains only the temperature profile 
These numerical values for various values of Pr and 5 are at < = 0 as typical for that value of Prandtl number. 
presented in Table 1. 

In terms of the variables introduced the local Nusselt 
number may be expressed as Nu,!,‘(Re,) = - l/0(<, 0). This 
quantity has been plotted in Fig. 1 where for each Prandtl 
number it is set against the associated pure forced convection 
asymptote and the associated pure free convection asymp 
tote, obtained from Sparrow and Gregg [5]. The forecast of 
local Nusselt number obtained from a local similarity 
hypothesis was demonstrated, by Lloyd and Sparrow [l], 
to provide a useful estimate in the region of transition 
between asymptotes for the case Pr = 0.72 where corrobora- 
tive evidence was available in the form of experimental 
results and series solutions. It was then reasonably inferred 
that their results might provide useful estimates of the local 
heat transfer in the transition region for other values of 
Prandtl number. In the constant heat flux case, although 
series solutions or experimental results are not available, it 

4. CONCLUDING REMARKS 

Local Nusselt number forecasts towards the free con- 
vection limit are still lacking. It may well be that a straight- 
forward extrapolation of the local similarity forecast would 
be a good estimate. With the problem formulated in terms 
of 5 it should be possible to investigate this suggestion via a 
coordinate expansion solution downstream. The problem is 
not trivial however since the question arises as to the 
contributions of eigen-solutions associated with the presence 
of the leading edge. 

seems reasonable to suppose that the application of local 
similarity is equally appropriate and moreover that plots of 
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